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3.1. Introduction. In this chapter, we shall discuss about finite fields, cyclic and cyclotomic extensions.
Also it will be derived that a field of composite order does not exist. Further, the relation between finite
division rings and finite fields is obtained.

3.1.1. Objective. The objective of these contents is to provide some important results to the reader like:

(1)  Normal bases.

(i)  Cyclic and Cyclotomic Extensions.

(iii) Cyclotomic Polynomials.

3.1.2. Keywords. Galois Field, Normal Extensions, Splitting Fields.
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3.2. Galois Field. A field is said to be Galois field if it is finite.

3.2.1. Theorem. Let F be a field having g elements and ch.F = p, where p is a prime number. Then,
q = p" for some integer n>1.

Proof. Let P be the prime subfield of F. Now, we know that upto isomorphism there are only two
prime fields, one is Q and other is Zp. Since P is finite prime field. So, P must be isomorphic to Zp.
Hence P must have p elements. Now, F is a finite field and Pc F so F is a finite dimensional
vector space over P.

Let [F : P] = n(say) and let {ai, a2, ..., an} be a basis of F over P. Then, each element of F can be written
uniquely as

Aa +A4,a,+..+A.a, where 4 eP.
As each A can be choosen in p ways, the total number of elements of F is p".

So, we have g = p" for some integer n>1.

Remark. In the other direction of above theorem, we shall show that for every prime p and integern>1,
there exists a field having p" elements. First we prove a lemma:

3.2.2. Lemma. If a field F has q elements, then F is the splitting field of f(x)=x*-xe P[x], where P
is the prime subfield of F.

Proof. We know that the set of all non-zero elements of a field form an abelian group w.r.t.
multiplication. So, F* = F — {0} is a multiplicative abelian group. Now, we are given that o(F) = q.
Therefore, o(F*) = g-1.

Now, let 4 be an arbitrary element of F*. Then,
A7 =1
where 1 is the multiplicative identity of F. Thus,
IANT=1 = %=1 = A19-1=0
That is, A satisfies the polynomial f(x) =x—x. Therefore, all the elements of F* are root of
f(x)=x*—=x. Also, f(0) =0 and so
f(1)=0 forall AeF

Since f(x) is of degree ¢, so it cannot have more than g roots in any extension of P. Thus, F is the
smallest extension of P containing all the roots of f(x).

Hence F is the splitting field of f(x) over P.

Remark. In above lemma, we have proved that every finite field is splitting field of some non-zero
polynomial.
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3.2.3. Theorem. For every prime p and integer n>1, there exists a field having p" elements.

Proof. Since p is a prime number. Therefore, Z, = {0, 1, ..., p-1} is a field w.r.t. +p and X, and is also a
prime field. Consider the polynomial

f(x)=x"-xeZ,x]

Let K be the splitting field of f(x). Then, K contain all the roots of f(x).

Since degree of f(x) is p", so f(x) has p" roots in K. Let these roots be a ,a,,..., a, . Then, we can write
n pn
X" —x=][(x-a) where a, e K .
i=1

Let T={acK:a"” =a}. Then, T =0, because 0T as 0" =0 and 0e K .

Now, 1e K and 1" =1 = 1eT.

Let ke Z, be any arbitrary element. Then, k = 1+1+...+1 (k-times). Therefore,

k” =(@+1+..+1)" =17 +1” +..+1" =1+1+..+1=k [ch.F =p]
= keT

So, every element of Zp is in T, that is, T contains prime field Z, of K. Further, consider a; any root of
f(x). Then,

f(a)=0 = a”" -a=0 = a" =a = aeT
Thus, T also contains all the roots of f(x).
We claim that T is a subfield of f(x).
Let o, BT .Then, " =a and B* = 3. Now,

(a-p)f =a” —p” -0=a-f = a-peT
and  (af)” =a" B =af = afeT.
Thus, T is a subfield of K. So, T =K.

So, we have T is a field which contains all the roots of f(x). But K is splitting field of f(x). So, K< T.
Thus, we have K=T.

Now, if AT ,then A" =4 = A" —1=0 = f(1)=0
Thus, every element of T is a root of f(x).

Therefore, T ={al,a2,...,apn}.

Now, we claim that all these elements are distinct.
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We have f(x)=x" —x. Anyroot a, of f(x) is a multiple root of f(x) iff a, isarootof f'(x).But
f'(x)=p"x"t-1=-1 wchz, =p

So, a, is not a root of f'(x). Therefore, no root of f(x) is a multiple root. So, all elements of T are
distinct. Hence
o(T) =p" = o(K).
Thus, we have obtained a field of order p".
3.2.4. Theorem. Finite fields having same number of elements are isomorphic.
Proof. Let Ky and K2 be finite fields such that o(K1) = o(K>).
Let ch.K: = p1 and ch.K2 = p2, where p1 and p2 are primes. Then, we have

Then, we have o(K,) = p* ando(K,) = p;: for some integers ni and n2. So, we have

ny

P =py = p=p,=p(say)andn =n, =n(say)
Let P1 and P, are prime subfields of K1 and K respectively. Then,

P=Z/<p>=P,.So, P =P,
By previous lemma, K is the splitting field of the polynomial f (x) =x" —x e P[x].
Now, P, =P, so P[x]=PR,[x].
Let f'(t) be the corresponding polynomial of f(x) and f'(t) =t” —t e P,[t].
Again, by previous lemma, K is the splitting field of the polynomial f '(t) € B,[t].
But P, = P,. Therefore, splitting field will also be isomorphic, that is, K, = K,.

3.2.5. Theorem. A field is finite iff F* = F — {0} is a multiplicative cyclic group.

Proof. Let F be a finite field with q elements. Then, F* = F —{0} is a multiplicative group with (q — 1)
elements.

We claim that F* contains elements having order (q - 1).

Since F* is a finite group, so if 4 € F*, then by Lagrange’s theorem
A°F) =1 forall AeF*

That is, multiplicative order of each element is finite, so let ‘n’ be the least positive integer such that
A"=1 forall 1e F*

Then, n<qg-1.

Now, consider the polynomial f(x) = x" — 1.
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Then, f(1)=1"-1=0= A satisfies f(x) forall A e F*.

But f(x) is of degree n, it can have atmost n roots. Also, all elements of F* are roots of f(x). Therefore,
o(F<n = g-1<n.

Hence there exists atleast one element A € F* such that o(1) =o(F*)=q-1.
Therefore, F* is cyclic.

Conversely, suppose that F* is cyclic. Let F* =<a >,

If a=1, then o(F*) =o0(a) =0o(1) = 1. So, F = {0, 1} is finite.

So, let us assume that a=1.

Case l. ch.F =0

Sincele F* = -1eF*. Therefore, —1=a" for some integer n.

W.L.O.G., let n>1, then

a” =1 = o(a)<2n = o(a)isfinite = o(F*)isfinite = o(F) is finite.

Since Ch.F = 0, then prime subfield P of F is such that PcF and P=Q, a contradiction, as
0(Q) =0 and o(P) <.

Hence this case is not possible.
Case ll. ch.F #0
Then, we must have ch.F = p for some prime p.

Let P be the subfield of F, then P=Z and o(P) =p. Since a=1, a-1eF

= a-leF*=<a> = a-1=a"forsomeintegern = a"-a+1=0.

Thus, ‘a’ satisfies the polynomial f(x) = x" — X — 1 over P[x] and hence ‘a’ is algebraic over P.

Then, [P(a) : P] = degree of minimal polynomial of ‘a’ over P = r (say)

Therefore, P(a) is a vector space over P of dimension r. Thus, P(a) = P"” ={(«,,,...,@,) : o, € P}.
Buto(P)=p = o(P")=p" = o(P(a)=p".Now, Fr=<a>and acP(a).

= F*cP(@ = oF*<o(P(@) = oF*<wx.

Therefore, o(F*) is finite.

Remark. The above theorem may not be true when a field F is infinite. We give an example of field of
rational numbers. Let Q*={a €Q: a = 0}.

We shall prove that the multiplicative group Q* is not cyclic.

Let, if possible, Q* is cyclic. So, let g be its generator, that is, Q* = < g >, where
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Y n* a,
— pl 2 "t rr

o 0y"..qf"
where pi’s and q;’s are distinct primes.
Now since 1€ Q*, so there must exist a positive integer n such that

g

n
1=qg" = A ;Zz___ flr — Ny Ncty na, _ "B ~NB; ng,
=0 = qfﬁ B nh PP =00 G

2 Yy

which is a contradiction, since pi’s and qi’s are distinct primes. Hence Q* is not cyclic.

Remark. In view of the above remark, we can say that R* and C* are not cyclic because every subgroup
of a cyclic group is cyclic and Q* is not cyclic.

3.3. Normal Bases. Let K be a finite separable normal extension of a subfield F and

G(K,F):{z'l,rz,...,rn}

be the Galois group of K over F. If x e K, then a basis of the form {z,(x),7,(x),...,7,(x)} for K over Fis
called a normal basis of K over F.
3.3.1. Theorem. Let K be a finite separable normal extension of degree n over a subfield F with Galois
group G(K,F)={z,7,,....7,} . The subset {x,X,,...,x,} of K is a basis for K over F if and only if the
matrix
7,(x) 7(x) ... 7(X,)
X,) ... X
(Ti(xj))z z-2:()(1) 7,( 2) Tzz( n)
7’-n (Xl) 2-n (XZ) 7’-n (Xn)
IS non-singular.
Proof. Suppose first that the matrix (z;(;)) is non-singular.
Since [K : F] = n, so it is enough to show that the set {x,,X,,...,x,} is linearly independent over F. For
this, consider
X +a,X +..+a,x, =0
where a,1<i<n, are elements of F.
Applying the F-automorphisms z,,7,,..., 7, , to obtain
alz-l(xl) + azfl(xz) ot anrl(xn) =0

az, (%) +a,7,(X,) +...+a,7,(%,) =0

&7, (%) + 8,7, (%) +...+28,7,(x,) =0,
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which is a homogeneous system of equations in unknowns a;,1<i<n, with non-singular matrix of
coefficients (ri (xj)). It follows from the theory of homogeneous linear equations that

a =a,=..=a,=0.Thus {x,X,,...,x,} is linearly independent and so forms a basis, as required.

Next, suppose that the matrix (ri(xj)) Is singular.

Again, due to the theory of homogeneous linear equations, it follows that there exist a non-trivial
solution for the system

ar (%) +a,r(X)+..+a,(x,)=0
T, (%) +a,7,(X,) +...+2a,7,(x,) =0

airn (Xl) + a‘ZTn (XZ) +.ot anz-n (Xn) = O!

in K, say, &, a,,...,a, . Since trace is a non-zero homomorphism, so there exists an element a of K such

that Sk/r(a) is non-zero. If ax is non-zero, we multiply the above system of equations by ook to obtain:

ﬂlz—l(xi) +:B2T1(X2) +---+ﬂnT1(Xn) =0
B, (%) + Bor, (%) +.. 4 B, (%,) =0

IBITn (Xl) +ﬁ22-n (XZ) +"'+ﬂn‘[n(xn) = 01

where S, =ae'a; (j=1, ..., n). Applying the F-automorphisms z;*,7,",...,7," to the above equations

respectively, to obtain

T (B)X + 1 (B)X, + et 1 (B)X, =0
0 (B)X + 75 (B) X+t 7,1 (B,)%, =0

7, (B)% + 7, (B) X+t 7, (B)%, =0,
Adding all these equations, as z; runs through the group G, so does z;*. we deduce that

Skir(B)X1+ ... + Skr(Bn)Xn=0.
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As Skr(Bk) is a member of F and B =aa,'a, =a, S0 Swr(Bk) = Swr(a) is non zero, hence the set
{xl,xz,...,xn} is linearly dependent over F and so it does not form a basis, a contradiction to the
assumption. Hence the result follows.

3.3.2. Corollary. The collection{z,(x),z,(x),...,z,(x)} , images of an element x under the automorphisms
in the Galois group G(K,F) ={z‘1,z'2,...,rn}, form a normal basis if and only if the matrix (rirj(x)) is
non-singular.

Next result proves that every separable normal extension of finite degree has a normal basis. However,
we will prove the result for an infinite field first.

Before starting the main result we are defining some terms:

1. If Kis any field, then Pn(K) represents the collection of all polynomials in n indeterminates with
scalars from the field K.
2. If Kis any field and f(x) is a polynomial over F, for « € K, we define o, (f) = f («) . Further, if

f € P,(F), means it is a polynomial in n inderminates, say x,X,,...,X,, then for any n-tuple
a=(a,a,,...,a,) we can obtain o, (f) by replacing x; with ¢; for 1<i<n.
3.3.3. Theorem. Let K be some extension of an infinite subfield F and f be a non-zero polynomial in
Pn(K). Then there are infinitely many ordered n-tuples o =(o,@,,....«,) of elements of F such that
o,(f)=0.

Proof. Mathematical induction on n is applied to obtain the required result.

For n =1, let f(x) be a polynomial of degree d in P(K) = K[x]. Then f can have at most d roots in F (as
obtained earlier in Section - 1), and so there are infinitely many elements in F which does not satisfy
f(x), thatis, f(a)=0 or o, (f) =0 forinfinitely many « inF.

Now assume that result holds for n = k, that is, if g is any polynomial in Px(K) then there are infinitely
many ordered k-tuples g =(4, 5,..... 4 ) of elements of F such that &,(g) #0.

Consider n = k+1, and let f be any non-zero polynomial in Px+1(K) = P(Pk(K)), so we may express f in
the form

2 t
f = gO + g1Xk+1 + g2Xk+l +..+ gtxk+l ’

where 9¢,.0,.0,.....,9, are polynomials in Px(K). Since f is a non-zero polynomial, at least one of the
polynomials g,,9,,9,,...,9, must be non-zero, say, g,. According to the induction hypothesis, there are
infinitely many ordered k-tuples g =(f,, f3,,.... 5, ) of elements of F such that o,(g;)=0. For each of

these k-tuples B=(A,, 5,,-... /4 ) » the polynomial

fﬁ =0y (9o)+ o-ﬁ(gl)xkﬂ + Gﬂ(gz)xsﬂ ot o-ﬁ(gt)xi+l
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is a non-zero polynomial in P(K). Now following the similar lines as for n = 1, we conclude that there
are infinitely many elements & of F such that o,(f,) =0. But if we set « =(B. Boyw B, ) itis Clear

that o, (f)=o,(f,).
Hence we see that the result is true for n = k+1. This completes the induction.

3.3.4. Theorem. Let K be a finite separable normal extension of degree n over an infinite subfield F.
Let G(K,F)={z,7,,..,7,} be the Galois group of K over F. If f is a polynomial in Pn(K)

with  indeterminates X, X,,..., X such that, for every aeK, o, (f)=0,where,

n

() = (r,(a),7,(@),...,7,(«)) then fis the zero polynomial.

Proof. Let {X,X,,....x,} be a basis for K over F. Then, due to Theorem 1, the matrix (z,(x;)) is non-

singular, and so is invertible with inverse, say, (pij) . Thus, (ri(xj))( pij): I, and so the (i , r)th entry of

this matrix are

1 ifi=r

gri (Xj ) pjr = {01

ifi=r
Let ,Bi=Zn:ri(xj)xj=ri(x1)X1+ri(x2)X2+...+ri(xn)xn and SB=(p,pB,...5)- Then, define the
j=1
polynomial g in Pn(K) as
9%y, X X,) =0y (F).

If a=(a,,a,,...a,) is any ordered n-tuple of elements of F and « = a,x, +a,X, +...+a,x,, then
o,(9)=9(a,a,..a,)=f (Zfl(xj)a,-,Zfz(xj)a,-,---,an(xj)a,-]
j=L j=L j=1

= f[Zn:rl(ajxj),irz(ajxj),...,irn(ajxj)j

=f (2'1(0(),2'2 (a),...7, (05))
0

by given hypothesis.

Now, if b=(b,b,....,b,) be any ordered n-tuple of elements of Fand ¢, => p,b, , for 1< j<n. Then,

iz-i(xj)cj ziifi(xj)pjrbr =Zi:i(7i (Xj)pjr ))r =b|’

g 1 ifi=r
nce (X, L= .
S JZ_;T,( )P {o, ifier
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Hence if c=(c,,c,,...,c, ), then

c.(9)=9(,.c,,...c,)=f [irl(xj)cj,irz(xj)cj,...,irn(xj)cjj

= f(bl,bz,...,bn)
=o,(f)

However, o.(g)=0 as obtained above, so o,(f)=0 for any ordered n-tuple b=(b1,b2,...,bn) of
elements of F. Thus f is the zero polynomial, otherwise it will contradict Theorem 2.

n

Remark. Let G(K,F)={z,7,,...,7,} be a Galois group of K over F. If 7,7, €G(K,F), then

r,z; €G(K,F) and so it must be an element of {z,7,,..,7,}. We consider 7z, = Since

G(K,F)={7,7,..7,

Todig -
.} 1s a group so due to left and right cancellation laws, r,r; =77, if and only if
=k, thatis, 7, =17, if and only if j =k, it follows that p(i, j) = p(i, k) if and only if j = k.
Similarly, p(h, j) = p(i, j) if and only if h = .

We can now prove the Normal Basis Theorem for the case of infinite fields.

3.3.5. Theorem. Let K be a finite separable normal extension of on infinite subfield F. Then there exists
a normal basis for K over F.

Proof. Consider now the polynomial f in P,(K) obtained by

Xoan Koz Xpwn
f = det Xoen XKoo = Xoem
Xoon  Kpn2) X o)

Then as discussed in the remark above X occurs exactly once in each row and exactly once in each
column of this matrix. If we replace ordered n-tuple (X, X,,...., X,) by (1, 0, ..., 0) in f, we obtain the

determinant of a matrix in which the identity element 1 of F occurs exactly once in each row and exactly
once in each column; the determinant of such matrix is either 1 or —1. Hence f is a non-zero polynomial.

Due to Theorem 3, there is at least one element x of K such that
f (z’l(x), 7,(X),..., 7, (X)) #0.
By the definition of the polynomial f, this in term becomes

det(z,z,(x))#0.

Hence, by corollary to Theorem 1, {rl(x),rz(x),..., rn(x)} is a normal basis for K over F.
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3.4. Cyclotomic Extensions. Let F be a field, for every positive integer m define

k,=X"-1
in F[X]. If an extension K of F, is a splitting field of one of the polynomials k,,, then it is called a
cyclotomic extension.

3.4.1. Theorem. Let F be a field with non-zero characteristic, then the cyclotomic extension is both
separable and normal.

Proof. Suppose that F has non-zero characteristic p, then every positive integer m can be expressed in
the form m=p"m;, where r>0 and p does not divide m;. Then we have

K,=X" —1:(Xmi —1)p = (kml)p', and so roots of k,, are similar to those k, . Thus splitting field of

k., over F is also a splitting field for k,, over F. Thus in this case we consider only those polynomials
k., for which m is not divisible by the characteristic. Then,

dk,,
dX

— mx m-1

The only non-zero factor of this polynomial are powers of X, none of which is a factor of k,,. Thus, no
roots of k,, are repeated and so k,, is a separable polynomial. Also being a splitting field of some non-
zero polynomial this extension is normal too. Hence all cyclotomic extensions of F are separable and
normal.

Remark. Let K,,, be a splitting field for k,, over F, where m is not divisible by the characteristic of F.
Also assume that F is contained in K,,. As the m roots of k,, in K, are all distinct, we call them the
m®" roots of unity in K,, and denote them by &, ..., &,,. Now if &; and §; are mt" roots of unity in K,,,,
we have (§£,)™ = §™&™ = 150 §¢; is also m*" roots of unity, therefore the collection of m*" roots
of unity form a subgroup of the multiplicative group on non-zero elements of K,,,. Further, being a finite
multiplicative subgroup of non-zero elements of a group this subgroup must be a cyclic group. Any
generator of this group is called a primitive m*" root of unity in K,,,. If £ is a primitive m*" root of unity,
then &7 is also a primitive m®" root of unity for each r, relatively prime to m.

If m is a prime number, then every m*" root of unity, except the identity element, is a primitive m*"* root
of unity. It is clear that any primitive m*" root of unity & may be taken as a primitive element for K,,,
over F, that is to say, K,, = F(¢).

First we are to define the group R,,.

The elements of R,,, are the residue classes modulo m consisting of integers which are relatively prime
to m, with the product of two relatively prime residue classes C;, C, is defined to be the residue class
containing n,n,, where n,, n, are members from C,, C, respectively. The order of R,, by @(m).

In the next theorem we will obtain the Galois group of a cyclotomic extension.
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3.4.2. Theorem. Let F be a field, m a positive integer which is not divisible by the characteristic of F, if
ch.F is non-zero. Let K,,, be a splitting field for k,, over F including F. Then the Galois group G(K,y, F)
is isomorphic to a subgroup of R,.

Proof. Let & be a primitive m®" root of unity in K,,,. If T is any element of G(K,,, F), then 7(§) is also a
primitive m*" root of unity. Hence 7(&) = &™r, where g.c.d.(n,,m) = 1. Define a mapping : G —» R,,
as follows:

6(t) = the residue class of n, modulo m.
If T and p are elements of G, then
g = (1p)(§) = t(p(8)) = 1(§™) = (2()" = &M,
o0 ny, = n,n,(mod m), and therefore 8(zp) = 6(7)0(p). Hence 6 is a homomorphism.

Further, 6 is one-to-one, as if T # p then 7(¢) # 7($), that is, £ # " and hence n, and n, are
members of different residue classes modulo m.

Hence, G is isomorphic to the subgroup 6(G) of R,,,.

3.5. Cyclotomic Polynomial. Let F be an arbitrary field and K,, a splitting field for k,, over F
containing F, we assume that m is not divisible by the characteristic of F if ch.F is non-zero. If d/m, the
polynomial k; = X¢ — 1 divides k,, = X™ — 1 and hence roots of k, are included among the m®" roots
of unity in K,,, that is, there are d distinct d*" roots of unity among the m‘" roots of unity and, in
particular, ¢(d) primitive d®® roots of unity. Thus, for each divisor d of m we may define the

polynomial ¢, in P(Ky,) as
b= -0,

where the product is taken over all the primitive dt* roots of unity &, in K,,,, then degg, = @(d). Since
every mt" root of unity & is a primitive d** root of unity for some d/m, it follows that

kyp=X"—-1= Hd/m¢d'
The polynomial ¢, is called the m®" cyclotomic polynomial.

3.5.1. Theorem. For every positive integer m, the coefficients of the m™® cyclotomic polynomial belong
to the prime subfield of F. In case if ch.F = 0, and the prime field is Q, then these coefficients are
integers.

Proof. Mathematical induction on m is sued to obtain the result.
For m =1, result is obvious as ¢, = X — 1 has coefficients in the prime field.
Suppose now that the result holds for all factors d of m such that d < m.

Then we have

Xm—1=¢ [lisa<m,.
d/m



56 Theory of Field Extensions

By hypothesis, all the factors in the product have coefficients in the prime field; X™ — 1 has coefficients
in the prime field. Hence so does ¢_ . In the case, when the prime field is @, every factor in the product

has integer coefficients with leading coefficient 1, when we divide a polynomial with integer
coefficients by a polynomial with integer coefficients and leading coefficient 1 the quotient has integer
coefficients. Thus ¢ have integer coefficients.

3.5.2. Example. Compute ¢., .
Since the divisors of 20 are 1, 2, 4, 5, 10 and 20, so we have
X2 —1=0,0,4,0561095
Similarly, the divisors of 10 are 1, 2, 5 and 10, so we have
X0 —1=4¢,4,4:0,,
Hence X+1=9¢,0,,

Now we need to calculate ¢, . For this, the divisors of 4 are 1, 2 and 4, so we have

Xt=1=¢.¢.4,

Also, X*—1=¢¢,.

So, we have g, =X*+1.
X10+1

Hence 20 = Toir

3.6. Cyclotomic Extensions of the Rational Number Field.

In this section, we will consider that the field F = Q, field of rational numbers, and prove that the Galois
group G(K,,Q) is isomorphic to the multiplicative group Rm of residue classes modulo m relatively

prime to m.

3.6.1. Content of a Polynomial. Let f(x)=4,+AX+A4X +..+1 X" € Z[x] be a polynomial over Z,
then the content ‘t” of f'is defined as t = g.cd.(4,, 4, 4,,.... 4,) .

3.6.2. Primitive Polynomial. A polynomial f(x) e Z[x] is said to be primitive polynomial if its content
is1.

It should be noted that if f(x)e Z[x], we may write f(x)=cf,(x), where c is the content of f(x) and
f,(x) is a primitive polynomial in Z[x].

3.6.3. Theorem. If a polynomial f(x) e Z[x] can be expressed as a product of two polynomials over Q,

the rational field, then it can be expressed as a product of two polynomials over Z .

Proof. Let f(x)eZ[x] and g,(x),9,(x) € Q[x] such that f(x)=9,(x).09,(x). Let di, d2 be the least
common multiples of the denominators of the coefficients of g,(x),d,(x) respectively. Then
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p,(x) =d,g,(x) and p,(x) =d,g,(x) are polynomials in Z[x]. Let t1 and to be the content of
p,(x) and p,(x) and write p,(x) =tk (x) and p,(x) =t,k,(x), where Kk (x)andk,(x) are primitive
polynomials in Z[x]. Then we have
d,d, f (x) =tt,k (X)k,(x).

We claim that k, (x)k,(x) is a primitive polynomial.

Let p be any prime number. Since k (x)=a,+ax+ax +.. and K,(x)=b, +bx+b,x*+... are
primitive polynomials so each polynomial has at least one coefficient which is not divisible by p. Let a,
and b, be the first coefficients of k;(x) and k,(x) respectively, which are not divisible by p. Then the

coefficients of X" in k, (x).k,(x) is

> ab,.

u+v=i+j
Ifv#i,u#jandu+ v =i+ ], then either u < i or v <; and hence either ay is divisible by p or by is
divisible by p. Thus, all the terms, except for aibj, in the summation are divisible by p and so the sum is
not divisible by p. It follows that for every prime number p, k;(x).k,(x) has at least one coefficient

which is not divisible p, which implies that the g.c.d. of the coefficients of k, (x).k,(x) is 1. Hence

k,(X).k,(x) is a primitive polynomial.

Thus, tit2 is the content of (d1d2)f(x). However, did> is a divisor of the content of (d1d.)f(x). Hence L
1¥2

is an integer, say, I. Then f(x) = (Ik,(x))k,(x) is a factorisation of f(x) in Z[x].

3.6.4. Corollary. If f(x)eQ[x] isamonic polynomial dividing x™ —1, then f(x) e Z[x].
3.6.5. Definition. If f(x)=4, +Ax+ALX*+..+A X" eF[x] and k is any positive integer, then we
denote by f,(x) the polynomial obtained as

f (X) =4, + A X+ X +..+ A X™ e F[X]
3.6.6. Theorem. Let f(x)eZ[x] divides x™ -1 and k is any positive integer such that g.c.d.(k,m)=1,
then f(x) divides f,(x) in Z[x].
Now we will prove that the Galois group G(K,,,Q) is isomorphic to the multiplicative group Rm of

residue classes modulo m relatively prime to m.

3.6.7. Theorem. Let Ky, be a splitting field of km over Q. Then G(K,,Q) =R, .

Proof. Let { be a primitive m™ root of unity in Kn. Define a monomorphism : G(K,,, Q) — R,, as
follows:

6(t) = the residue class of n, modulo m,
for each automorphism © in G (K,,,, Q), we defined ©({) = (", where n is relatively prime to m.

This mapping is onto as well. Hence the required result holds.
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3.6.8. Corollary. The cyclotomic polynomials ¢ are all irreducible in Q[Xx].

3.7. Cyclic Extension. Let F be a field. A finite separable normal extension K of F is said to be cyclic
extension of F if G(K,F) is cyclic. We are considering that F c K .

3.7.1. Theorem. Let K be a cyclic extension of a subfield F and G(K,F)=<z>. If xe K, then

N, (x)=1 if and only if there is an element y e K such that x :%, and S, ,-(x)=0 if and only if

Ty
there is an element z in K such that x =z —7(2).

Proof. Since K is a finite extension of F so let [K : F]=n; then | G(K,F)|=n and so z" =1, the identity
automorphism.

First, suppose that x = Y Then

z(y)

Similarly, if x=z-17(z), we have

See () =1(X)+7(X) +72(X) +...+ 7" (X)
=72-1()+7(2)-*(2)+* (D) - (D) +...+ " (2)-7"(2) = 0.

Conversely, suppose that
Ny,e (X) = 1()7(X)7°(X)...2"(X) = X2 (X)z* (X)...2"*(X) =1.
Then xis clearly non-zero and so is invertible with x™ = z(x)z*(X)...z"*(x).
Next, since the set of automorphisms {l ,r,rz,...,r”’l} is linearly independent over K, the mapping
e+ Xt +Xr(X)7% +...+ Xr(X)...c" 2 (X)r""

is non-zero mapping of K into itself. That is to say, there is an element t of K such that

y=t+xz(t) + Xe(X) 7 (t) +...+ X(X)...2" 2 ()" ()
is non-zero. Applying the automorphism 7z, we obtain

7(y) = (t) + (X) 7> (t) + 7 (X) 2> (X) 3 (1) +...2(X)7*(X) ... 2" ()t = x 1.

Thus x=y/z(y). Similarly suppose

See () =X+7(X)+7°(X) +...+ 7" (X) =0.

Then of course 7(X) +7°(X) +...+ 7" (X) = —X.
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Since S, - is not the zero mapping; so let t be an element of K such that S, (t) is non-zero, and
consider the element

z, = xe() + (X+ (X)) 2> (t) +...+ (X+7(X) +...+ "2 (X)" (1)
Applying the automorphism z we obtain

7(z) = (X)) + (z(X) + 2 (X)) (1) +.. .+ (z(X) + T2 (X) +...+ 2" ()t
=7(X)7° () + ((X) + ? (X)) (t) +...— xt.

Hence we have

2, —7(2) = X(t+ () + 2 () +...+ 7" (1)) = XS, (1)
Since S, (t) lies in F and hence is left fixed by z, it follows that if we write z=12,/S,,-(t), then
X=2-17(2).

3.7.2. Definition. Let a be any element of a division ring D. Then the normaliser of a in D is the set
N(a) consisting of elements of D which commute with a:

so n belongs to N(a) if and only if an = na.

3.7.3. Exercise. Let D be a division ring. Then the centre Z of D is a subfield of D and the normalizer of
each element of D is a division subring of D including Z.

3.7.4. Wedderburn theorem. Every finite division ring is a field.

Proof. Let D be a finite division ring, with centre Z. Suppose Z has g elements and D has q" elements.
We claimthat D =Z and n = 1.

The multiplicative group D* can be expressed as a union of finitely many conjugate classes, say
n

Cy,...,Ck, W.r.t. the subgroup Z*. Then, |Ci| = qt_ _i where ti<n . Thus,

k n
n q -1
g -1=q-1+ —
Zl q' -1
. . . . . 0 X"-1
Now the nth cyclotomic polynomial @, in P(Q) is a factor of both the polynomials X" - 1 and 1

q" -1
q'-1

Let a = ®n(q). Then a divides g" - 1 and . Hence a divides q — 1.

If n > 1, then for every primitive nth root of unity { in the field of complex numbers C we have
|g-C >q-1.Hence |a|]=]]|q-{ > q—1, and hence a cannot be a factor of q — 1.

It follows that there is no conjugate class Ci containing more than one element. Hencen =1and D = Z,
as required.

3.7.5. Corollary. If F is a finite set, then it is a division ring if and only if it is a field.
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3.8. Check Your Progress.
1. Design fields of order 27, 16, 25, 49.
2. Compute ¢,

3.9. Summary.

In this chapter, we have derived results related to cyclotomic extensions and cyclic extensions. Also It
was proved that a finite division ring is a field, therefore we can say that a division ring which is not a
field is always infinite.
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