Structure

- 3.1. Introduction.
- 3.2. Galois Field.
- 3.3. Normal Bases.
- 3.4. Cyclotomic Extensions.
- 3.5. Cyclotomic Polynomial.
- 3.6. Cyclotomic Extensions of the Rational Number Field.
- 3.7. Cyclic Extensions.
- 3.8. Check Your Progress.
- 3.9. Summary.
- **3.1. Introduction.** In this chapter, we shall discuss about finite fields, cyclic and cyclotomic extensions. Also it will be derived that a field of composite order does not exist. Further, the relation between finite division rings and finite fields is obtained.
- **3.1.1. Objective.** The objective of these contents is to provide some important results to the reader like:
 - (i) Normal bases.
 - (ii) Cyclic and Cyclotomic Extensions.
 - (iii) Cyclotomic Polynomials.
- **3.1.2. Keywords.** Galois Field, Normal Extensions, Splitting Fields.

3.2. Galois Field. A field is said to be Galois field if it is finite.

3.2.1. Theorem. Let F be a field having q elements and ch.F = p, where p is a prime number. Then, $q = p^n$ for some integer $n \ge 1$.

Proof. Let P be the prime subfield of F. Now, we know that upto isomorphism there are only two prime fields, one is Q and other is Z_p . Since P is finite prime field. So, P must be isomorphic to Z_p . Hence P must have p elements. Now, F is a finite field and $P \subseteq F$ so F is a finite dimensional vector space over P.

Let [F : P] = n(say) and let $\{a_1, a_2, ..., a_n\}$ be a basis of F over P. Then, each element of F can be written uniquely as

$$\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n$$
 where $\lambda_i \in P$.

As each λ_i can be choosen in p ways, the total number of elements of F is pⁿ.

So, we have $q = p^n$ for some integer $n \ge 1$.

Remark. In the other direction of above theorem, we shall show that for every prime p and integer $n \ge 1$, there exists a field having p^n elements. First we prove a lemma:

3.2.2. Lemma. If a field F has q elements, then F is the splitting field of $f(x) = x^q - x \in P[x]$, where P is the prime subfield of F.

Proof. We know that the set of all non-zero elements of a field form an abelian group w.r.t. multiplication. So, $F^* = F - \{0\}$ is a multiplicative abelian group. Now, we are given that o(F) = q. Therefore, $o(F^*) = q-1$.

Now, let λ be an arbitrary element of F*. Then,

$$\lambda^{q-1} = 1$$

where 1 is the multiplicative identity of F. Thus,

$$\lambda \lambda^{q-1} = \lambda \implies \lambda^q = \lambda \implies \lambda^q - \lambda = 0$$

That is, λ satisfies the polynomial $f(x) = x^q - x$. Therefore, all the elements of F* are root of $f(x) = x^q - x$. Also, f(0) = 0 and so

$$f(\lambda) = 0$$
 for all $\lambda \in F$

Since f(x) is of degree q, so it cannot have more than q roots in any extension of P. Thus, F is the smallest extension of P containing all the roots of f(x).

Hence F is the splitting field of f(x) over P.

Remark. In above lemma, we have proved that every finite field is splitting field of some non-zero polynomial.

3.2.3. Theorem. For every prime p and integer $n \ge 1$, there exists a field having pⁿ elements.

Proof. Since p is a prime number. Therefore, $Z_p = \{0, 1, ..., p-1\}$ is a field w.r.t. $+_p$ and x_p and is also a prime field. Consider the polynomial

$$f(x) = x^{p^n} - x \in Z_p[x]$$

Let K be the splitting field of f(x). Then, K contain all the roots of f(x).

Since degree of f(x) is p^n , so f(x) has p^n roots in K. Let these roots be $a_1, a_2, ..., a_{p^n}$. Then, we can write

$$x^{p^n} - x = \prod_{i=1}^{p^n} (x - a_i)$$
 where $a_i \in K$.

Let $T = \{a \in K : a^{p^n} = a\}$. Then, $T \neq 0$, because $0 \in T$ as $0^{p^n} = 0$ and $0 \in K$.

Now, $1 \in K$ and $1^{p^n} = 1 \implies 1 \in T$.

Let $k \in \mathbb{Z}_p$ be any arbitrary element. Then, k = 1+1+...+1 (k-times). Therefore,

$$k^{p^n} = (1+1+...+1)^{p^n} = 1^{p^n} + 1^{p^n} + ... + 1^{p^n} = 1+1+...+1 = k$$
 [ch.F = p]
 $\Rightarrow k \in T$

So, every element of Z_p is in T, that is, T contains prime field Z_p of K. Further, consider a_i any root of f(x). Then,

$$f(a_i) = 0 \implies a_i^{p^n} - a_i = 0 \implies a_i^{p^n} = a_i \implies a_i \in T$$

Thus, T also contains all the roots of f(x).

We claim that T is a subfield of f(x).

Let $\alpha, \beta \in T$. Then, $\alpha^{p^n} = \alpha$ and $\beta^{p^n} = \beta$. Now,

$$(\alpha - \beta)^{p^n} = \alpha^{p^n} - \beta^{p^n} - 0 = \alpha - \beta \implies \alpha - \beta \in T$$

and
$$(\alpha\beta)^{p^n} = \alpha^{p^n}\beta^{p^n} = \alpha\beta \implies \alpha\beta \in T$$
.

Thus, T is a subfield of K. So, $T \subseteq K$.

So, we have T is a field which contains all the roots of f(x). But K is splitting field of f(x). So, $K \subseteq T$. Thus, we have K = T.

Now, if
$$\lambda \in T$$
, then $\lambda^{p^n} = \lambda \implies \lambda^{p^n} - \lambda = 0 \implies f(\lambda) = 0$

Thus, every element of T is a root of f(x).

Therefore,
$$T = \{a_1, a_2, ..., a_{p^n}\}$$
.

Now, we claim that all these elements are distinct.

We have $f(x) = x^{p^n} - x$. Any root a_i of f(x) is a multiple root of f(x) iff a_i is a root of f'(x). But

$$f'(x) = p^n x^{p^n - 1} - 1 = -1$$
 $\therefore ch.Z_p = p$

So, a_i is not a root of f'(x). Therefore, no root of f(x) is a multiple root. So, all elements of T are distinct. Hence

$$o(T) = p^n = o(K)$$
.

Thus, we have obtained a field of order p^n .

3.2.4. Theorem. Finite fields having same number of elements are isomorphic.

Proof. Let K_1 and K_2 be finite fields such that $o(K_1) = o(K_2)$.

Let $ch.K_1 = p_1$ and $ch.K_2 = p_2$, where p_1 and p_2 are primes. Then, we have

Then, we have $o(K_1) = p_1^{n_1}$ and $o(K_2) = p_2^{n_2}$ for some integers n_1 and n_2 . So, we have

$$p_1^{n_1} = p_2^{n_2} \implies p_1 = p_2 = p(\text{say}) \text{ and } n_1 = n_2 = n(\text{say})$$

Let P_1 and P_2 are prime subfields of K_1 and K_2 respectively. Then,

$$P_1 \cong \mathbb{Z}/\langle p \rangle \cong P_2$$
. So, $P_1 \cong P_2$

By previous lemma, K_1 is the splitting field of the polynomial $f(x) = x^{p^n} - x \in P_1[x]$.

Now, $P_1 \cong P_2$ so $P_1[x] \cong P_2[x]$.

Let f'(t) be the corresponding polynomial of f(x) and $f'(t) = t^{p^n} - t \in P_2[t]$.

Again, by previous lemma, K_2 is the splitting field of the polynomial $f'(t) \in P_2[t]$.

But $P_1 \cong P_2$. Therefore, splitting field will also be isomorphic, that is, $K_1 \cong K_2$.

3.2.5. Theorem. A field is finite iff $F^* = F - \{0\}$ is a multiplicative cyclic group.

Proof. Let F be a finite field with q elements. Then, $F^* = F - \{0\}$ is a multiplicative group with (q - 1) elements.

We claim that F^* contains elements having order (q - 1).

Since F* is a finite group, so if $\lambda \in F^*$, then by Lagrange's theorem

$$\lambda^{o(F^*)} = 1$$
 for all $\lambda \in F^*$

That is, multiplicative order of each element is finite, so let 'n' be the least positive integer such that

$$\lambda^n = 1$$
 for all $\lambda \in F^*$

Then, $n \le q-1$.

Now, consider the polynomial $f(x) = x^n - 1$.

Then, $f(\lambda) = \lambda^n - 1 = 0 \Rightarrow \lambda$ satisfies f(x) for all $\lambda \in F^*$.

But f(x) is of degree n, it can have at most n roots. Also, all elements of F^* are roots of f(x). Therefore, $o(F^*) \le n \implies q-1 \le n$.

Hence there exists at least one element $\lambda \in F^*$ such that $o(\lambda) = o(F^*) = q - 1$.

Therefore, F* is cyclic.

Conversely, suppose that F^* is cyclic. Let $F^* = \langle a \rangle$.

If a = 1, then $o(F^*) = o(a) = o(1) = 1$. So, $F = \{0, 1\}$ is finite.

So, let us assume that $a \neq 1$.

Case I. ch.F = 0

Since $1 \in F^* \implies -1 \in F^*$. Therefore, $-1 = a^n$ for some integer n.

W.L.O.G., let $n \ge 1$, then

 $a^{2n} = 1 \implies o(a) \le 2n \implies o(a)$ is finite $\implies o(F^*)$ is finite $\implies o(F)$ is finite.

Since Ch.F = 0, then prime subfield P of F is such that $P \subseteq F$ and $P \cong Q$, a contradiction, as $o(Q) = \infty$ and $o(P) < \infty$.

Hence this case is not possible.

Case II. $ch.F \neq 0$

Then, we must have ch.F = p for some prime p.

Let P be the subfield of F, then $P \cong Z_p$ and o(P) = p. Since $a \ne 1$, $a-1 \in F$

 $\Rightarrow a-1 \in F^* = \langle a \rangle \Rightarrow a-1 = a^n \text{ for some integer n } \Rightarrow a^n - a + 1 = 0.$

Thus, 'a' satisfies the polynomial $f(x) = x^n - x - 1$ over P[x] and hence 'a' is algebraic over P.

Then, [P(a): P] =degree of minimal polynomial of 'a' over P = r (say)

Therefore, P(a) is a vector space over P of dimension r. Thus, $P(a) \cong P^{(r)} = \{(\alpha_1, \alpha_2, ..., \alpha_r) : \alpha_i \in P\}$.

But $o(P) = p \implies o(P^{(r)}) = p^r \implies o(P(a)) = p^r$. Now, $F^* = \langle a \rangle$ and $a \in P(a)$.

$$\Rightarrow F^* \subset P(a) \Rightarrow o(F^*) \leq o(P(a)) \Rightarrow o(F^*) < \infty$$
.

Therefore, $o(F^*)$ is finite.

Remark. The above theorem may not be true when a field F is infinite. We give an example of field of rational numbers. Let $Q^* = \{\alpha \in Q : \alpha \neq 0\}$.

We shall prove that the multiplicative group Q^* is not cyclic.

Let, if possible, Q^* is cyclic. So, let g be its generator, that is, $Q^* = \langle g \rangle$, where

$$g = \frac{p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}}{q_1^{\beta_1} q_2^{\beta_2} ... q_t^{\beta_t}}$$

where p_i's and q_i's are distinct primes.

Now since $1 \in Q^*$, so there must exist a positive integer n such that

$$1 = g^{n} = \left(\frac{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} ... p_{r}^{\alpha_{r}}}{q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} ... q_{t}^{\beta_{t}}}\right)^{n} \implies p_{1}^{n\alpha_{1}} p_{2}^{n\alpha_{2}} ... p_{r}^{n\alpha_{r}} = q_{1}^{n\beta_{1}} q_{2}^{n\beta_{2}} ... q_{t}^{n\beta_{t}}$$

which is a contradiction, since p_i's and q_i's are distinct primes. Hence Q* is not cyclic.

Remark. In view of the above remark, we can say that R^* and C^* are not cyclic because every subgroup of a cyclic group is cyclic and Q^* is not cyclic.

3.3. Normal Bases. Let K be a finite separable normal extension of a subfield F and

$$G(K,F) = \left\{\tau_1, \tau_2, ..., \tau_n\right\}$$

be the Galois group of K over F. If $x \in K$, then a basis of the form $\{\tau_1(x), \tau_2(x), ..., \tau_n(x)\}$ for K over F is called a normal basis of K over F.

3.3.1. Theorem. Let K be a finite separable normal extension of degree n over a subfield F with Galois group $G(K,F) = \{\tau_1, \tau_2, ..., \tau_n\}$. The subset $\{x_1, x_2, ..., x_n\}$ of K is a basis for K over F if and only if the matrix

$$(\tau_{i}(x_{j})) = \begin{pmatrix} \tau_{1}(x_{1}) & \tau_{1}(x_{2}) & \dots & \tau_{1}(x_{n}) \\ \tau_{2}(x_{1}) & \tau_{2}(x_{2}) & \dots & \tau_{2}(x_{n}) \\ \vdots & & \ddots & & \vdots \\ \tau_{n}(x_{1}) & \tau_{n}(x_{2}) & \dots & \tau_{n}(x_{n}) \end{pmatrix}$$

is non-singular.

Proof. Suppose first that the matrix $(\tau_i(x_i))$ is non-singular.

Since [K : F] = n, so it is enough to show that the set $\{x_1, x_2, ..., x_n\}$ is linearly independent over F. For this, consider

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

where $a_i, 1 \le i \le n$, are elements of F.

Applying the F-automorphisms $\tau_1, \tau_2, ..., \tau_n$, to obtain

$$\begin{split} a_1\tau_1(x_1) + a_2\tau_1(x_2) + \ldots + a_n\tau_1(x_n) &= 0 \\ a_1\tau_2(x_1) + a_2\tau_2(x_2) + \ldots + a_n\tau_2(x_n) &= 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ a_1\tau_n(x_1) + a_2\tau_n(x_2) + \ldots + a_n\tau_n(x_n) &= 0, \end{split}$$

which is a homogeneous system of equations in unknowns $a_i, 1 \le i \le n$, with non-singular matrix of coefficients $(\tau_i(x_j))$. It follows from the theory of homogeneous linear equations that $a_1 = a_2 = ... = a_n = 0$. Thus $\{x_1, x_2, ..., x_n\}$ is linearly independent and so forms a basis, as required.

Next, suppose that the matrix $(\tau_i(x_i))$ is singular.

Again, due to the theory of homogeneous linear equations, it follows that there exist a non-trivial solution for the system

in K, say, $\alpha_1, \alpha_2, ..., \alpha_n$. Since trace is a non-zero homomorphism, so there exists an element α of K such that $S_{K/F}(\alpha)$ is non-zero. If α_k is non-zero, we multiply the above system of equations by $\alpha\alpha_k^{-1}$ to obtain:

$$\beta_{1}\tau_{1}(x_{1}) + \beta_{2}\tau_{1}(x_{2}) + \dots + \beta_{n}\tau_{1}(x_{n}) = 0$$

$$\beta_{1}\tau_{2}(x_{1}) + \beta_{2}\tau_{2}(x_{2}) + \dots + \beta_{n}\tau_{2}(x_{n}) = 0$$

$$\vdots$$

$$\vdots$$

$$\beta_{1}\tau_{n}(x_{1}) + \beta_{2}\tau_{n}(x_{2}) + \dots + \beta_{n}\tau_{n}(x_{n}) = 0,$$

where $\beta_j = \alpha \alpha_k^{-1} \alpha_j$ (j = 1, ..., n). Applying the F-automorphisms $\tau_1^{-1}, \tau_2^{-1}, ..., \tau_n^{-1}$ to the above equations respectively, to obtain

$$\begin{split} &\tau_1^{-1}(\beta_1)x_1 + \tau_1^{-1}(\beta_2)x_2 + \ldots + \tau_1^{-1}(\beta_n)x_n = 0 \\ &\tau_2^{-1}(\beta_1)x_1 + \tau_2^{-1}(\beta_2)x_2 + \ldots + \tau_2^{-1}(\beta_n)x_n = 0 \\ &\cdot &\cdot &\cdot \\ &\tau_n^{-1}(\beta_1)x_1 + \tau_n^{-1}(\beta_2)x_2 + \ldots + \tau_n^{-1}(\beta_n)x_n = 0, \end{split}$$

Adding all these equations, as τ_i runs through the group G, so does τ_i^{-1} we deduce that

$$S_{K/F}(\beta_1)x_1 + \ldots + \ S_{K/F}(\beta_n)x_n = 0.$$

As $S_{K/F}(\beta_k)$ is a member of F and $\beta_k = \alpha \alpha_k^{-1} \alpha_k = \alpha$, so $S_{K/F}(\beta_k) = S_{K/F}(\alpha)$ is non zero, hence the set $\{x_1, x_2, ..., x_n\}$ is linearly dependent over F and so it does not form a basis, a contradiction to the assumption. Hence the result follows.

3.3.2. Corollary. The collection $\{\tau_1(x), \tau_2(x), ..., \tau_n(x)\}$, images of an element x under the automorphisms in the Galois group $G(K, F) = \{\tau_1, \tau_2, ..., \tau_n\}$, form a normal basis if and only if the matrix $(\tau_i \tau_j(x))$ is non-singular.

Next result proves that every separable normal extension of finite degree has a normal basis. However, we will prove the result for an infinite field first.

Before starting the main result we are defining some terms:

- 1. If K is any field, then $P_n(K)$ represents the collection of all polynomials in n indeterminates with scalars from the field K.
- 2. If K is any field and f(x) is a polynomial over F, for $\alpha \in K$, we define $\sigma_{\alpha}(f) = f(\alpha)$. Further, if $f \in P_n(F)$, means it is a polynomial in n inderminates, say $x_1, x_2, ..., x_n$, then for any n-tuple $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ we can obtain $\sigma_{\alpha}(f)$ by replacing x_i with α_i for $1 \le i \le n$.
- **3.3.3. Theorem.** Let K be some extension of an infinite subfield F and f be a non-zero polynomial in $P_n(K)$. Then there are infinitely many ordered n-tuples $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ of elements of F such that $\sigma_{\alpha}(f) \neq 0$.

Proof. Mathematical induction on n is applied to obtain the required result.

For n = 1, let f(x) be a polynomial of degree d in P(K) = K[x]. Then f can have at most d roots in F (as obtained earlier in Section - I), and so there are infinitely many elements in F which does not satisfy f(x), that is, $f(\alpha) \neq 0$ or $\sigma_{\alpha}(f) \neq 0$ for infinitely many α in F.

Now assume that result holds for n = k, that is, if g is any polynomial in $P_k(K)$ then there are infinitely many ordered k-tuples $\beta = (\beta_1, \beta_2, ..., \beta_k)$ of elements of F such that $\sigma_{\beta}(g) \neq 0$.

Consider n = k+1, and let f be any non-zero polynomial in $P_{k+1}(K) = P(P_k(K))$, so we may express f in the form

$$f = g_0 + g_1 x_{k+1} + g_2 x_{k+1}^2 + \dots + g_t x_{k+1}^t$$

where $g_0, g_1, g_2, ..., g_t$ are polynomials in $P_k(K)$. Since f is a non-zero polynomial, at least one of the polynomials $g_0, g_1, g_2, ..., g_t$ must be non-zero, say, g_i . According to the induction hypothesis, there are infinitely many ordered k-tuples $\beta = (\beta_1, \beta_2, ..., \beta_k)$ of elements of F such that $\sigma_{\beta}(g_i) \neq 0$. For each of these k-tuples $\beta = (\beta_1, \beta_2, ..., \beta_k)$, the polynomial

$$f_{\beta} = \sigma_{\beta}(g_0) + \sigma_{\beta}(g_1)x_{k+1} + \sigma_{\beta}(g_2)x_{k+1}^2 + \dots + \sigma_{\beta}(g_t)x_{k+1}^t$$

is a non-zero polynomial in P(K). Now following the similar lines as for n = 1, we conclude that there are infinitely many elements δ of F such that $\sigma_{\delta}(f_{\beta}) \neq 0$. But if we set $\alpha = (\beta_1, \beta_2, ..., \beta_k, \delta)$ it is clear that $\sigma_{\alpha}(f) = \sigma_{\delta}(f_{\beta})$.

Hence we see that the result is true for n = k+1. This completes the induction.

3.3.4. Theorem. Let K be a finite separable normal extension of degree n over an infinite subfield F. Let $G(K, F) = \{\tau_1, \tau_2, ..., \tau_n\}$ be the Galois group of K over F. If f is a polynomial in $P_n(K)$ with indeterminates $X_1, X_2, ..., X_n$ such that, for every $\alpha \in K$, $\sigma_{\tau(\alpha)}(f) = 0$, where, $\tau(\alpha) = (\tau_1(\alpha), \tau_2(\alpha), ..., \tau_n(\alpha))$ then f is the zero polynomial.

Proof. Let $\{x_1, x_2, ..., x_n\}$ be a basis for K over F. Then, due to Theorem 1, the matrix $(\tau_i(x_j))$ is non-singular, and so is invertible with inverse, say, (p_{ij}) . Thus, $(\tau_i(x_j))(p_{ij}) = I_n$ and so the (i, r)th entry of this matrix are

$$\sum_{j=1}^{n} \tau_i(x_j) p_{jr} = \begin{cases} 1, & \text{if } i = r \\ 0, & \text{if } i \neq r \end{cases}$$

Let $\beta_i = \sum_{j=1}^n \tau_i(x_j) X_j = \tau_i(x_1) X_1 + \tau_i(x_2) X_2 + \dots + \tau_i(x_n) X_n$ and $\beta = (\beta_1, \beta_2, \dots, \beta_n)$. Then, define the polynomial g in $P_n(K)$ as

$$g(X_1, X_2, ..., X_n) = \sigma_{\beta}(f).$$

If $a = (a_1, a_2, ..., a_n)$ is any ordered n-tuple of elements of F and $\alpha = a_1x_1 + a_2x_2 + ... + a_nx_n$, then

$$\sigma_{a}(g) = g(a_{1}, a_{2}, ..., a_{n}) = f\left(\sum_{j=1}^{n} \tau_{1}(x_{j}) a_{j}, \sum_{j=1}^{n} \tau_{2}(x_{j}) a_{j}, ..., \sum_{j=1}^{n} \tau_{n}(x_{j}) a_{j}\right)$$

$$= f\left(\sum_{j=1}^{n} \tau_{1}(a_{j}x_{j}), \sum_{j=1}^{n} \tau_{2}(a_{j}x_{j}), ..., \sum_{j=1}^{n} \tau_{n}(a_{j}x_{j})\right)$$

$$= f\left(\tau_{1}(\alpha), \tau_{2}(\alpha), ..., \tau_{n}(\alpha)\right)$$

$$= 0$$

by given hypothesis.

Now, if $b = (b_1, b_2, ..., b_n)$ be any ordered n-tuple of elements of F and $c_j = \sum_{r=1}^n p_{jr} b_r$, for $1 \le j \le n$. Then,

$$\sum_{j=1}^{n} \tau_{i}(x_{j}) c_{j} = \sum_{j=1}^{n} \sum_{r=1}^{n} \tau_{i}(x_{j}) p_{jr} b_{r} = \sum_{r=1}^{n} \sum_{j=1}^{n} \left(\tau_{i}(x_{j}) p_{jr} \right) b_{r} = b_{i},$$

since
$$\sum_{j=1}^{n} \tau_i(x_j) p_{jr} = \begin{cases} 1, & \text{if } i = r \\ 0, & \text{if } i \neq r \end{cases}$$

Hence if $c = (c_1, c_2, ..., c_n)$, then

$$\sigma_{c}(g) = g(c_{1}, c_{2}, ..., c_{n}) = f\left(\sum_{j=1}^{n} \tau_{1}(x_{j})c_{j}, \sum_{j=1}^{n} \tau_{2}(x_{j})c_{j}, ..., \sum_{j=1}^{n} \tau_{n}(x_{j})c_{j}\right)$$

$$= f\left(b_{1}, b_{2}, ..., b_{n}\right)$$

$$= \sigma_{b}(f)$$

However, $\sigma_c(g) = 0$ as obtained above, so $\sigma_b(f) = 0$ for any ordered n-tuple $b = (b_1, b_2, ..., b_n)$ of elements of F. Thus f is the zero polynomial, otherwise it will contradict Theorem 2.

Remark. Let $G(K,F) = \{\tau_1,\tau_2,...,\tau_n\}$ be a Galois group of K over F. If $\tau_i,\tau_j \in G(K,F)$, then $\tau_i\tau_j \in G(K,F)$ and so it must be an element of $\{\tau_1,\tau_2,...,\tau_n\}$. We consider $\tau_i\tau_j = \tau_{p(i,j)}$. Since $G(K,F) = \{\tau_1,\tau_2,...,\tau_n\}$ is a group so due to left and right cancellation laws, $\tau_i\tau_j = \tau_i\tau_k$ if and only if j = k, that is, $\tau_{p(i,j)} = \tau_{p(i,k)}$ if and only if j = k, it follows that p(i,j) = p(i,k) if and only if j = k. Similarly, p(h,j) = p(i,j) if and only if h = i.

We can now prove the Normal Basis Theorem for the case of infinite fields.

3.3.5. Theorem. Let K be a finite separable normal extension of on infinite subfield F. Then there exists a normal basis for K over F.

Proof. Consider now the polynomial f in $P_n(K)$ obtained by

$$f = \det \begin{pmatrix} X_{p(1,1)} & X_{p(1,2)} & \dots & X_{p(1,n)} \\ X_{p(2,1)} & X_{p(2,2)} & \dots & X_{p(2,n)} \\ \vdots & & \ddots & & \vdots \\ X_{p(n,1)} & X_{p(n,2)} & \dots & X_{p(n,n)} \end{pmatrix}.$$

Then as discussed in the remark above X_i occurs exactly once in each row and exactly once in each column of this matrix. If we replace ordered n-tuple $(X_1, X_2, ..., X_n)$ by (1, 0, ..., 0) in f, we obtain the determinant of a matrix in which the identity element 1 of F occurs exactly once in each row and exactly once in each column; the determinant of such matrix is either 1 or -1. Hence f is a non-zero polynomial.

Due to Theorem 3, there is at least one element x of K such that

$$f(\tau_1(x), \tau_2(x), ..., \tau_n(x)) \neq 0.$$

By the definition of the polynomial f, this in term becomes

$$\det\left(\tau_i\tau_j(x)\right)\neq 0.$$

Hence, by corollary to Theorem 1, $\{\tau_1(x), \tau_2(x), ..., \tau_n(x)\}$ is a normal basis for K over F.

3.4. Cyclotomic Extensions. Let F be a field, for every positive integer m define

$$k_m = X^m - 1$$

in F[X]. If an extension K of F, is a splitting field of one of the polynomials k_m , then it is called a **cyclotomic extension**.

3.4.1. Theorem. Let F be a field with non-zero characteristic, then the cyclotomic extension is both separable and normal.

Proof. Suppose that F has non-zero characteristic p, then every positive integer m can be expressed in the form $m = p^r m_1$, where $r \ge 0$ and p does not divide m_1 . Then we have $k_m = X^m - 1 = \left(X^{m_1} - 1\right)^{p^r} = (k_{m_1})^{p^r}$, and so roots of k_m are similar to those k_{m_1} . Thus splitting field of k_{m_1} over F is also a splitting field for k_m over F. Thus in this case we consider only those polynomials k_m for which m is not divisible by the characteristic. Then,

$$\frac{\mathrm{dk}_{\mathrm{m}}}{\mathrm{dX}} = mX^{m-1}$$

The only non-zero factor of this polynomial are powers of X, none of which is a factor of k_m . Thus, no roots of k_m are repeated and so k_m is a separable polynomial. Also being a splitting field of some non-zero polynomial this extension is normal too. Hence all cyclotomic extensions of F are separable and normal.

Remark. Let K_m be a splitting field for k_m over F, where m is not divisible by the characteristic of F. Also assume that F is contained in K_m . As the m roots of k_m in K_m are all distinct, we call them the m^{th} roots of unity in K_m and denote them by ξ_1, \ldots, ξ_m . Now if ξ_i and ξ_j are m^{th} roots of unity in K_m , we have $(\xi_i \xi_j)^m = \xi_i^m \xi_j^m = 1$ so $\xi_i \xi_j$ is also m^{th} roots of unity, therefore the collection of m^{th} roots of unity form a subgroup of the multiplicative group on non-zero elements of K_m . Further, being a finite multiplicative subgroup of non-zero elements of a group this subgroup must be a cyclic group. Any generator of this group is called a primitive m^{th} root of unity in K_m . If ξ is a primitive m^{th} root of unity, then ξ^r is also a primitive m^{th} root of unity for each r, relatively prime to m.

If m is a prime number, then every m^{th} root of unity, except the identity element, is a primitive m^{th} root of unity. It is clear that any primitive m^{th} root of unity ξ may be taken as a primitive element for K_m over F, that is to say, $K_m = F(\xi)$.

First we are to define the group R_m .

The elements of \mathbf{R}_m are the residue classes modulo m consisting of integers which are relatively prime to m, with the product of two relatively prime residue classes C_1 , C_2 is defined to be the residue class containing $n_1 n_2$, where n_1 , n_2 are members from C_1 , C_2 respectively. The order of \mathbf{R}_m by $\emptyset(m)$.

In the next theorem we will obtain the Galois group of a cyclotomic extension.

3.4.2. Theorem. Let F be a field, m a positive integer which is not divisible by the characteristic of F, if ch.F is non-zero. Let K_m be a splitting field for k_m over F including F. Then the Galois group $G(K_m, F)$ is isomorphic to a subgroup of \mathbf{R}_m .

Proof. Let ξ be a primitive m^{th} root of unity in K_m . If τ is any element of $G(K_m, F)$, then $\tau(\xi)$ is also a primitive m^{th} root of unity. Hence $\tau(\xi) = \xi^{n_{\tau}}$, where g.c.d. $(n_{\tau}, m) = 1$. Define a mapping $: G \to \mathbf{R}_m$ as follows:

 $\theta(\tau)$ = the residue class of n_{τ} modulo m.

If τ and ρ are elements of G, then

$$\xi^{n_{\tau\rho}} = (\tau\rho)(\xi) = \tau(\rho(\xi)) = \tau(\xi^{n_{\rho}}) = (\tau(\xi))^{n_{\rho}} = \xi^{n_{\tau}n_{\rho}},$$

so $n_{\tau\rho} \equiv n_{\tau}n_{\rho} \pmod{m}$, and therefore $\theta(\tau\rho) = \theta(\tau)\theta(\rho)$. Hence θ is a homomorphism.

Further, θ is one-to-one, as if $\tau \neq \rho$ then $\tau(\xi) \neq \tau(\xi)$, that is, $\xi^{n_{\tau}} \neq \xi^{n_{\rho}}$ and hence n_{τ} and n_{ρ} are members of different residue classes modulo m.

Hence, G is isomorphic to the subgroup $\theta(G)$ of \mathbf{R}_m .

3.5. Cyclotomic Polynomial. Let F be an arbitrary field and K_m a splitting field for k_m over F containing F, we assume that m is not divisible by the characteristic of F if ch.F is non-zero. If d/m, the polynomial $k_d = X^d - 1$ divides $k_m = X^m - 1$ and hence roots of k_d are included among the m^{th} roots of unity in K_m , that is, there are d distinct d^{th} roots of unity among the m^{th} roots of unity and, in particular, $\phi(d)$ primitive d^{th} roots of unity. Thus, for each divisor d of m we may define the polynomial ϕ_d in $P(K_m)$ as

$$\phi_d = \prod (X - \xi_d),$$

where the product is taken over all the primitive d^{th} roots of unity ξ_d in K_m , then $deg\phi_d = \emptyset(d)$. Since every m^{th} root of unity ξ is a primitive d^{th} root of unity for some d/m, it follows that

$$k_m = X^m - 1 = \prod_{d/m} \phi_d.$$

The polynomial ϕ_m is called the m^{th} cyclotomic polynomial.

3.5.1. Theorem. For every positive integer m, the coefficients of the m^{th} cyclotomic polynomial belong to the prime subfield of F. In case if ch.F = 0, and the prime field is \mathbf{Q} , then these coefficients are integers.

Proof. Mathematical induction on *m* is sued to obtain the result.

For m = 1, result is obvious as $\phi_1 = X - 1$ has coefficients in the prime field.

Suppose now that the result holds for all factors d of m such that d < m.

Then we have

$$X^m - 1 = \phi_m \prod_{\substack{1 \le d < m \\ d/m}} \phi_d.$$

By hypothesis, all the factors in the product have coefficients in the prime field; X^m-1 has coefficients in the prime field. Hence so does ϕ_m . In the case, when the prime field is \boldsymbol{Q} , every factor in the product has integer coefficients with leading coefficient 1, when we divide a polynomial with integer coefficients by a polynomial with integer coefficients and leading coefficient 1 the quotient has integer coefficients. Thus ϕ_m have integer coefficients.

3.5.2. Example. Compute ϕ_{20} .

Since the divisors of 20 are 1, 2, 4, 5, 10 and 20, so we have

$$X^{20} - 1 = \phi_1 \phi_2 \phi_4 \phi_5 \phi_{10} \phi_{20}.$$

Similarly, the divisors of 10 are 1, 2, 5 and 10, so we have

$$X^{10} - 1 = \phi_1 \phi_2 \phi_5 \phi_{10}$$
.

Hence

$$X^{10} + 1 = \phi_4 \phi_{20}$$

Now we need to calculate ϕ_4 . For this, the divisors of 4 are 1, 2 and 4, so we have

$$\begin{split} X^4 - 1 &= \phi_1 \phi_2 \phi_4. \\ X^2 - 1 &= \phi_1 \phi_2. \\ \phi_4 &= X^2 + 1. \\ \phi_{20} &= \frac{X^{10} + 1}{X^2 + 1}. \end{split}$$

Also,

So, we have

Hence

3.6. Cyclotomic Extensions of the Rational Number Field.

In this section, we will consider that the field F = Q, field of rational numbers, and prove that the Galois group $G(K_m,Q)$ is isomorphic to the multiplicative group R_m of residue classes modulo m relatively prime to m.

- **3.6.1. Content of a Polynomial.** Let $f(x) = \lambda_0 + \lambda_1 x + \lambda_2 x^2 + ... + \lambda_n x^n \in Z[x]$ be a polynomial over Z, then the content 't' of f is defined as $t = g.c.d.(\lambda_0, \lambda_1, \lambda_2, ..., \lambda_n)$.
- **3.6.2. Primitive Polynomial.** A polynomial $f(x) \in Z[x]$ is said to be primitive polynomial if its content is 1.

It should be noted that if $f(x) \in Z[x]$, we may write $f(x) = cf_1(x)$, where c is the content of f(x) and $f_1(x)$ is a primitive polynomial in Z[x].

3.6.3. Theorem. If a polynomial $f(x) \in Z[x]$ can be expressed as a product of two polynomials over Q, the rational field, then it can be expressed as a product of two polynomials over Z.

Proof. Let $f(x) \in Z[x]$ and $g_1(x), g_2(x) \in Q[x]$ such that $f(x) = g_1(x).g_2(x)$. Let d_1, d_2 be the least common multiples of the denominators of the coefficients of $g_1(x), g_2(x)$ respectively. Then

 $p_1(x) = d_1g_1(x)$ and $p_2(x) = d_2g_2(x)$ are polynomials in Z[x]. Let t_1 and t_2 be the content of $p_1(x)$ and $p_2(x)$ and write $p_1(x) = t_1k_1(x)$ and $p_2(x) = t_2k_2(x)$, where $k_1(x)$ and $k_2(x)$ are primitive polynomials in Z[x]. Then we have

$$d_1d_2f(x) = t_1t_2k_1(x)k_2(x)$$
.

We claim that $k_1(x)k_2(x)$ is a primitive polynomial.

Let p be any prime number. Since $k_1(x) = a_0 + a_1x + a_2x^2 + ...$ and $k_2(x) = b_0 + b_1x + b_2x^2 + ...$ are primitive polynomials so each polynomial has at least one coefficient which is not divisible by p. Let a_i and b_j be the first coefficients of $k_1(x)$ and $k_2(x)$ respectively, which are not divisible by p. Then the coefficients of X^{i+j} in $k_1(x).k_2(x)$ is

$$\sum_{u+v=i+j} a_u.b_v.$$

If $v \neq i$, $u \neq j$ and u + v = i + j, then either u < i or v < j and hence either a_u is divisible by p or b_v is divisible by p. Thus, all the terms, except for a_ib_j , in the summation are divisible by p and so the sum is not divisible by p. It follows that for every prime number p, $k_1(x).k_2(x)$ has at least one coefficient which is not divisible p, which implies that the g.c.d. of the coefficients of $k_1(x).k_2(x)$ is 1. Hence $k_1(x).k_2(x)$ is a primitive polynomial.

Thus, t_1t_2 is the content of $(d_1d_2)f(x)$. However, d_1d_2 is a divisor of the content of $(d_1d_2)f(x)$. Hence $\frac{t_1t_2}{d_1d_2}$ is an integer, say, l. Then $f(x) = (lk_1(x))k_2(x)$ is a factorisation of f(x) in Z[x].

3.6.4. Corollary. If $f(x) \in Q[x]$ is a monic polynomial dividing $x^m - 1$, then $f(x) \in Z[x]$.

3.6.5. Definition. If $f(x) = \lambda_0 + \lambda_1 x + \lambda_2 x^2 + ... + \lambda_n x^n \in F[x]$ and k is any positive integer, then we denote by $f_k(x)$ the polynomial obtained as

$$f_k(x) = \lambda_0 + \lambda_1 x^k + \lambda_2 x^{2k} + \dots + \lambda_n x^{nk} \in F[x]$$

3.6.6. Theorem. Let $f(x) \in Z[x]$ divides $x^m - 1$ and k is any positive integer such that g.c.d.(k,m)=1, then f(x) divides $f_k(x)$ in Z[x].

Now we will prove that the Galois group $G(K_m, Q)$ is isomorphic to the multiplicative group R_m of residue classes modulo m relatively prime to m.

3.6.7. Theorem. Let K_m be a splitting field of k_m over \mathbf{Q} . Then $G(K_m, Q) \cong R_m$.

Proof. Let ζ be a primitive m^{th} root of unity in K_m . Define a monomorphism : $G(K_m, Q) \to R_m$ as follows:

$$\theta(\tau)$$
 = the residue class of n_{τ} modulo m ,

for each automorphism \mathfrak{T} in $G(K_m, Q)$, we defined $\mathfrak{T}(\zeta) = \zeta^n\mathfrak{T}$ where $\mathfrak{n}_\mathfrak{T}$ is relatively prime to m.

This mapping is onto as well. Hence the required result holds.

3.6.8. Corollary. The cyclotomic polynomials ϕ_m are all irreducible in Q[x].

3.7. Cyclic Extension. Let F be a field. A finite separable normal extension K of F is said to be cyclic extension of F if G(K,F) is cyclic. We are considering that $F \subseteq K$.

3.7.1. Theorem. Let K be a cyclic extension of a subfield F and $G(K,F) = <\tau >$. If $x \in K$, then $N_{K/F}(x) = 1$ if and only if there is an element $y \in K$ such that $x = \frac{y}{\tau(y)}$, and $S_{K/F}(x) = 0$ if and only if there is an element z in K such that $x = z - \tau(z)$.

Proof. Since *K* is a finite extension of *F* so let [K:F] = n; then |G(K,F)| = n and so $\tau^n = I$, the identity automorphism.

First, suppose that $x = \frac{y}{\tau(y)}$. Then

$$N_{K/F}(x) = I(x)\tau(x)\tau^{2}(x)\dots\tau^{n-1}(x) = \frac{y}{\tau(x)}\frac{\tau(y)}{\tau^{2}(y)}\frac{\tau^{2}(y)}{\tau^{3}(y)}\dots\frac{\tau^{n-1}(y)}{\tau^{n}(y)} = 1.$$

Similarly, if $x = z - \tau(z)$, we have

$$S_{K/F}(x) = I(x) + \tau(x) + \tau^{2}(x) + \dots + \tau^{n-1}(x)$$

= $z - \tau(z) + \tau(z) - \tau^{2}(z) + \tau^{2}(z) - \tau^{3}(z) + \dots + \tau^{n-1}(z) - \tau^{n}(z) = 0.$

Conversely, suppose that

$$N_{K/F}(x) = I(x)\tau(x)\tau^{2}(x)\dots\tau^{n-1}(x) = x\tau(x)\tau^{2}(x)\dots\tau^{n-1}(x) = 1.$$

Then x is clearly non-zero and so is invertible with $x^{-1} = \tau(x)\tau^2(x)...\tau^{n-1}(x)$.

Next, since the set of automorphisms $\{I, \tau, \tau^2, ..., \tau^{n-1}\}$ is linearly independent over K, the mapping

$$\varepsilon + x\tau + x\tau(x)\tau^2 + \ldots + x\tau(x)\ldots\tau^{n-2}(x)\tau^{n-1}$$

is non-zero mapping of K into itself. That is to say, there is an element t of K such that

$$y = t + x\tau(t) + x\tau(x)\tau^{2}(t) + ... + x\tau(x)...\tau^{n-2}(x)\tau^{n-1}(t)$$

is non-zero. Applying the automorphism τ , we obtain

$$\tau(y) = \tau(t) + \tau(x)\tau^{2}(t) + \tau(x)\tau^{2}(x)\tau^{3}(t) + \dots + \tau(x)\tau^{2}(x)\dots\tau^{n-1}(x)t = x^{-1}y.$$

Thus $x = y / \tau(y)$. Similarly suppose

$$S_{K/F}(x) = x + \tau(x) + \tau^{2}(x) + \ldots + \tau^{n-1}(x) = 0.$$

Then of course $\tau(x) + \tau^{2}(x) + ... + \tau^{n-1}(x) = -x$.

Since $S_{K/F}$ is not the zero mapping; so let t be an element of K such that $S_{K/F}(t)$ is non-zero, and consider the element

$$z_1 = x\tau(t) + (x + \tau(x))\tau^2(t) + \dots + (x + \tau(x) + \dots + \tau^{n-2}(x))\tau^{n-1}(t).$$

Applying the automorphism τ we obtain

$$\tau(z_1) = \tau(x)\tau^2(t) + (\tau(x) + \tau^2(x))\tau^3(t) + \dots + (\tau(x) + \tau^2(x) + \dots + \tau^{n-1}(x))t$$
$$= \tau(x)\tau^2(t) + (\tau(x) + \tau^2(x))\tau^3(t) + \dots - xt.$$

Hence we have

$$z_1 - \tau(z_1) = x(t + \tau(t) + \tau^2(t) + \dots + \tau^{n-1}(t)) = xS_{K/F}(t).$$

Since $S_{K/F}(t)$ lies in F and hence is left fixed by τ , it follows that if we write $z = z_1 / S_{K/F}(t)$, then $x = z - \tau(z)$.

3.7.2. Definition. Let a be any element of a division ring D. Then the **normaliser** of a in D is the set N(a) consisting of elements of D which commute with a:

so n belongs to N(a) if and only if an = na.

- **3.7.3. Exercise.** Let D be a division ring. Then the centre Z of D is a subfield of D and the normalizer of each element of D is a division subring of D including Z.
- **3.7.4. Wedderburn theorem.** Every finite division ring is a field.

Proof. Let D be a finite division ring, with centre Z. Suppose Z has q elements and D has q^n elements. We claim that D = Z and n = 1.

The multiplicative group D* can be expressed as a union of finitely many conjugate classes, say C_1, \ldots, C_k , w.r.t. the subgroup Z*. Then, $|C_i| = \frac{q^n-1}{q^{t_i}-1}$ where $t_i < n$. Thus,

$$q^{n}-1=q-1+\sum_{i=1}^{k}\frac{q^{n}-1}{q^{t_{i}}-1}.$$

Now the nth cyclotomic polynomial Φ_n in $P(\mathbf{Q})$ is a factor of both the polynomials $X^n - 1$ and $\frac{X^n - 1}{X^{t_i} - 1}$.

Let $a = \Phi_n(q)$. Then a divides $q^n - 1$ and $\frac{q^n - 1}{q^{t_i} - 1}$. Hence a divides q - 1.

If n > 1, then for every primitive nth root of unity ζ in the field of complex numbers \mathbb{C} we have $|q - \zeta| > q - 1$. Hence $|a| = \prod |q - \zeta| > q - 1$, and hence a cannot be a factor of q - 1.

It follows that there is no conjugate class C_i containing more than one element. Hence n = 1 and D = Z, as required.

3.7.5. Corollary. If F is a finite set, then it is a division ring if and only if it is a field.

3.8. Check Your Progress.

- 1. Design fields of order 27, 16, 25, 49.
- 2. Compute ϕ_{30} .

3.9. Summary.

In this chapter, we have derived results related to cyclotomic extensions and cyclic extensions. Also It was proved that a finite division ring is a field, therefore we can say that a division ring which is not a field is always infinite.

Books Suggested:

- 1. Luther, I.S., Passi, I.B.S., Algebra, Vol. IV-Field Theory, Narosa Publishing House, 2012.
- 2. Stewart, I., Galios Theory, Chapman and Hall/CRC, 2004.
- 3. Sahai, V., Bist, V., Algebra, Narosa Publishing House, 1999.
- 4. Bhattacharya, P.B., Jain, S.K., Nagpaul, S.R., Basic Abstract Algebra (2nd Edition), Cambridge University Press, Indian Edition, 1997.
- 5. Lang, S., Algebra, 3rd edition, Addison-Wesley, 1993.
- 6. Adamson, I. T., Introduction to Field Theory, Cambridge University Press, 1982.
- 7. Herstein, I.N., Topics in Algebra, Wiley Eastern Ltd., New Delhi, 1975.